8427 C 4712 (Pages: 3) Name..... Reg. No..... # SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2021 (CBCSS) Chemistry ## CHE 2C 05—GROUP THEORY AND CHEMICAL BONDING (2019 Admissions) Time: Three Hours Maximum: 30 Weightage #### General Instructions - 1. In cases where choices are provided, students can attend all questions in each section. - 2. The minimum number of questions to be attended from the Section/Part shall remain the same. - 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part. ## Section A Answer any **eight** questions. Each question carries a weightage of 1. - 1. Assign Schoenflies symbol of point group: - (a) Allene. - (b) Dichloromethane. - 2. Find the similarity transform of any one of the vertical planes in NH₃. - 3. Generate matrices using positional co-ordinates x, y, z: - (a) S_{4} . - (b) C₃. - 4. Distinguish between degenerate and non-degenerate representations with examples. - 5. Explain with one example non-vanishing integral. - 6. Cis butadiene belongs c_{2n} point group. Find the character under E in the gamma cart. - 7. Write projection operator \hat{P}_{Ag} for c_{2h} . The operations are E, c_{2z} , $\sigma_h x_y$ and i. - 8. State and explain Born-Oppenheimer approximation. - 9. Write spectroscopic term symbol of: - (a) O_9 . - (b) N₂. - 10. State and explain Laporte selection rules. $(8 \times 1 = 8 \text{ weightage})$ Turn over ### Section B Answer any **six** questions. Each question carries a weightage of 2. - 11. Explain the importance of block diagonalization in solving quantum mechanical problem using group theory. - 12. Derive C_3 character table. - 13. Find IR and Raman active vibrations of $\mathrm{H_{2}O}\ (c_{2v}).$ - 14. Find molecular orbitals of HCHO, Use c_{2v} character table. - 15. Find bond energy of π -molecular orbitals of benzene by HMO method. - 16. Discuss Frost Hückel mnemonic device for cyclic polymers. - 17. Show that the four symmetry operations E, c_{2z} , $\sigma_h x_y$ and i form a mathematical group under multiplication. - 18. List the symmetry operations possible on \mathbf{D}_{4h} . Classify them into different classes of operations. $(6 \times 2 = 12 \text{ weightage})$ ## Section C Answer any **two** questions. Each question carries a weightage of 5. - 19. Find hybridized orbitals of C in CH_4 . Use Td character table. - 20. Find $\pi(pi)$ molecular orbitals of $cis\ butadiene$ by HMO method. Use c_{2v} character table. - 21. Discuss V.B. method of bonding as applied to $\rm H_2$. - 22. (a) Setup group multiplication tables for c_{3v} . - (b) State and explain rules for assigning Mulliken's symbol for symmetry species. | c_{2v} | E | c_{2z} | $\sigma_v x_z$ | o'vyz | | | |----------|--------------|----------|----------------|------------|---|-----------------| | A_1 | 1 | 1 | 1 | 1 | minorial positiva antimateria | x^2, y^2, z^2 | | A_2 | 1 | 1 | 1 | -1 | Rz | xy | | B_1 | panel | -1 | 1 | -1 | x, Ry | xz | | B_2 | - Territoria | -1 | -1 | - Personal | y, Rx | хуг | | $T_{\rm d}$ | E | $8c_3$ | $3c_2$ | $6s_4$ | $6\sigma_d$ | | | |-------------|---|----------|--------|--------|-------------|--|----------------------| | A_1 | 1 | 1 | 1 | 1 | 1 | and the consistency with predictions and the consistency of consis | $x^2 + y^2 + z^2$ | | A_2 | 1 | 1 | 1 | 1 | -1 | | | | E | 2 | marker] | 2 | 0 | 0 | | $(2z^2 - x^2 - y^2)$ | | T_1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz) | | | T_2 | 3 | 0 | -1 | -1 | 1 | (x, y, z) | (xy, xz, yz) | $(2 \times 5 = 10 \text{ weightage})$ T. VICTORIA CO PALAKKAU-078001